Lecture 13
Influence of electrode material composition on self-discharge of lead-acid battery

Lead-acid batteries are widely used as starter batteries for traction applications,
such as for cars and trucks. The reason for this wide usage of lead-acid batteries is their
low cost in. combination with their performance robustness for a broad range of operating
conditions. However, one drawback of this battery type is that the inherent
thermodynamics of the battery chemistry causes the battery to self-discharge over time.

Below we will discuss a lead-acid battery model which explains behaviour of
battery at high (1200 A) and low (3 A) discharge rates, and the long-term self discharge
behavior with no applied external current (0 A).

Figure 1 shows the 1D model geometry. There are four domains: the positive
porous electrode, the reservoir, the separator, and the negative porous electrode. The
model uses the Lead-Acid Battery interface for solving for the following unknown
variables: ¢, - the electronic potential; ¢, - the ionic potential; € - the porosity (electrolyte
volume fraction) of the porous electrodes, and c - the electrolyte concentration.
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Figure 1. Modeled geometry. The model is in 1D in the x direction.

The outer boundary of the negative electrode is grounded and a discharge current
is applied to the positive end terminal.

Three different discharge currents are simulated in three separate studies. The
first study performs a C/20-discharge — a constant current in order to obtain a full
discharge in 20 hours, followed by a one hour relaxation period at zero external load. The
second study simulates a high load 20C-discharge during 1 minute. In the third study the
external load is set to zero and the simulation time is extended to one year to study the
self-discharge behavior [1].

The main electrode reaction in the positive (PbO2) electrode during discharge is
following:

PbO2(s) + HSO4 +3H" +3e™ = PbSO4(s) + H20

The equilibrium potential of the electrode depends on the electrolyte concentration
as shown in Figure 2.
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Figure 2. Equilibrium potential of the PbO: reaction as a function of electrolyte
concentration in the positive electrode.

The combination of an aqueous solution and a high potential results in oxygen gas
evolution at the positive electrode according to:
H20 =72 O2(gas) + 2H" + 2e"

The main discharge reaction for the negative (Pb) electrode is:
Pb(s) + HSO4 = PbSOq(s) +H* + 2e-
with a equilibrium potential that depends on the electrolyte concentration as shown
in Figure 3.
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Figure 3. Equilibrium potential of the Pb reaction as a function of electrolyte
concentration in the negative electrode.

This dependence of the equilibrium potential on the electrolyte concentration, for
both discharge reactions, is present in [2].
The low operating potential of the negative electrode results in hydrogen evolution
according to:
2H* + 2 e = Hz(gaseous) Eo=0V
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For the gas evolution reaction, Butler-Volmer type kinetic expressions are used.
For the main discharge reactions the default discharge reactions of the Lead-Acid Battery
interface (in COMSOL Multiphysics) are used.

The electrolyte diffusion coefficient and the electrolyte conductivity vary with the
concentration according to Figure 4 and Figure 5, respectively.
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Figure 4. Electrolyte diffusion
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Figure 5. Electrolyte conductivity

coefficient as a function of electrolyte as a function of electrolyte concentration.
concentration.

Figure 6 shows the polarization plot of the cell. At the shut-off of the current the
cell voltage first rises swiftly due to the sudden absence of activation and resistive losses,
but after this the potential continues to rise slightly during a relaxation period.
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Figure 6. Cell voltage versus time for a C/20 discharge + 1-hour resting period.

Figure 7 compares the discharge curves of the three simulations on a log t scale.
The 20C cell voltage is much lower than the C/20 curve due to higher internal resistive
and activation losses.
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Figure 7. Discharge curves (cell voltage versus time) for the three simulations.
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Figure 8. State-of-charge during the one-year self-discharge simulation.

The self-discharge curve indicates a moderate cell voltage drop after a year, Figure
8 shows that the state-of-charge of the positive electrode has decreased by over 25%
during the same period.
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