Lecture 13

Influence of electrode material composition on self-discharge of lead-acid battery

Lead-acid batteries are widely used as starter batteries for traction applications, such as for cars and trucks. The reason for this wide usage of lead-acid batteries is their low cost in. combination with their performance robustness for a broad range of operating conditions. However, one drawback of this battery type is that the inherent thermodynamics of the battery chemistry causes the battery to self-discharge over time.

Below we will discuss a lead-acid battery model which explains behaviour of battery at high (1200 A) and low (3 A) discharge rates, and the long-term self discharge behavior with no applied external current (0 A).

Figure 1 shows the 1D model geometry. There are four domains: the positive porous electrode, the reservoir, the separator, and the negative porous electrode. The model uses the Lead-Acid Battery interface for solving for the following unknown variables: ϕ_s - the electronic potential; ϕ_l - the ionic potential; ε - the porosity (electrolyte volume fraction) of the porous electrodes, and ε - the electrolyte concentration.

Figure 1. Modeled geometry. The model is in 1D in the x direction.

The outer boundary of the negative electrode is grounded and a discharge current is applied to the positive end terminal.

Three different discharge currents are simulated in three separate studies. The first study performs a C/20-discharge — a constant current in order to obtain a full discharge in 20 hours, followed by a one hour relaxation period at zero external load. The second study simulates a high load 20C-discharge during 1 minute. In the third study the external load is set to zero and the simulation time is extended to one year to study the self-discharge behavior [1].

The main electrode reaction in the positive (PbO2) electrode during discharge is following:

$$PbO_2(s) + HSO_4^- + 3H^+ + 3e^- = PbSO_4(s) + H_2O$$

The equilibrium potential of the electrode depends on the electrolyte concentration as shown in Figure 2.

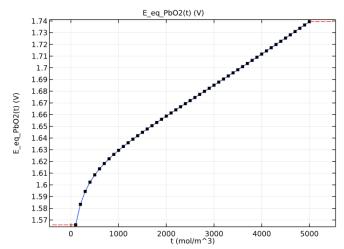


Figure 2. Equilibrium potential of the PbO₂ reaction as a function of electrolyte concentration in the positive electrode.

The combination of an aqueous solution and a high potential results in oxygen gas evolution at the positive electrode according to:

$$H_2O = \frac{1}{2}O_2(gas) + 2H^+ + 2e^-$$

The main discharge reaction for the negative (Pb) electrode is:

$$Pb(s) + HSO_4^- = PbSO_4(s) + H^+ + 2e^-$$

with a equilibrium potential that depends on the electrolyte concentration as shown in Figure 3.

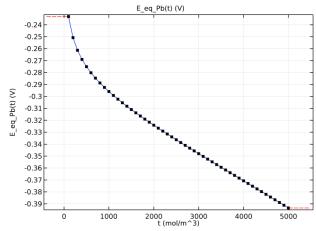
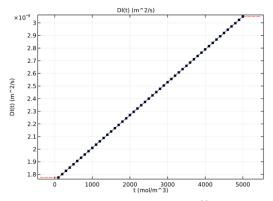


Figure 3. Equilibrium potential of the Pb reaction as a function of electrolyte concentration in the negative electrode.


This dependence of the equilibrium potential on the electrolyte concentration, for both discharge reactions, is present in [2].

The low operating potential of the negative electrode results in hydrogen evolution according to:

$$2H^+ + 2 e^- = H_2(gaseous)$$
 E₀=0V

For the gas evolution reaction, Butler-Volmer type kinetic expressions are used. For the main discharge reactions the default discharge reactions of the Lead-Acid Battery interface (in COMSOL Multiphysics) are used.

The electrolyte diffusion coefficient and the electrolyte conductivity vary with the concentration according to Figure 4 and Figure 5, respectively.

Sigmal(t) (S/m)

90

85

80

75

75

76

65

45

45

40

30

30

25

20

15

10

0

1000

2000

3000

4000

5000

Figure 4. Electrolyte diffusion coefficient as a function of electrolyte concentration.

Figure 5. Electrolyte conductivity as a function of electrolyte concentration.

Figure 6 shows the polarization plot of the cell. At the shut-off of the current the cell voltage first rises swiftly due to the sudden absence of activation and resistive losses, but after this the potential continues to rise slightly during a relaxation period.

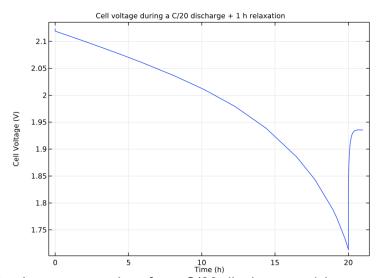


Figure 6. Cell voltage versus time for a C/20 discharge + 1-hour resting period.

Figure 7 compares the discharge curves of the three simulations on a log t scale. The 20C cell voltage is much lower than the C/20 curve due to higher internal resistive and activation losses.

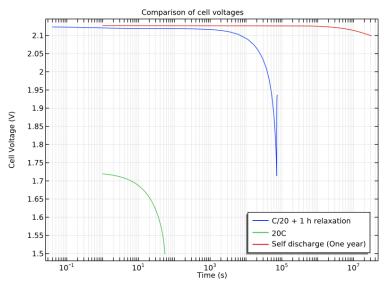


Figure 7. Discharge curves (cell voltage versus time) for the three simulations.

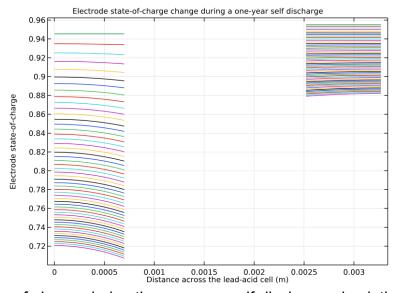


Figure 8. State-of-charge during the one-year self-discharge simulation.

The self-discharge curve indicates a moderate cell voltage drop after a year, Figure 8 shows that the state-of-charge of the positive electrode has decreased by over 25% during the same period.

References

- 1. M. Cugnet, S. Laruelle, S. Grugeon, B. Sahut, J. Sabatier, J.M. Tarascon, and A. Oustaloup, "A Mathematical Model for the Simulation of New and Aged Automotive Lead-Acid Batteries," J. Electrochemical Soc., vol. 156, pp. A974–A985, 2009.
- 2. COMSOL Multiphysics. Application Library path: Batteries_and_Fuel_Cells_Module/Batteries,General/pb_acid_battery_1d